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We study the decoherence of a qubit weakly coupled to frustrated spin baths. We focus on spin baths
described by the classical Ising spin glass and the quantum random transverse Ising model which are known to
have complex thermodynamic phase diagrams as a function of an external magnetic field and temperature.
Using a combination of numerical and analytical methods, we show that for baths initially in thermal equilib-
rium, the resulting decoherence is highly sensitive to the nature of the coupling to the environment and is
qualitatively different in different parts of the phase diagram. We find an unexpected strong non-Markovian
decay of the coherence when the random transverse Ising model bath is prepared in an initial state character-
ized by a finite temperature paramagnet. This is contrary to the usual case of exponential decay �Markovian�
expected for spin baths in finite temperature paramagnetic phases, thereby illustrating the importance of the
underlying nontrivial dynamics of interacting quantum spinbaths.
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I. INTRODUCTION

The understanding and control of the decoherence of
small quantum systems is central to a lot of recent develop-
ments in the fields of nanotechnology and quantum
computers.1–5 For example, the efficacy of qubits, the basic
building block of a quantum computer, which can be spin
qubits, Josephson junction qubits, charge or flux qubits de-
pends largely on the environments, or baths, to which they
are often weakly coupled. The effect of environments on the
coherence of the qubit has been studied in various contexts
with particular emphasis on bosonic baths.6,7 In the past few
years, the realization of solid-state qubits in semiconducting
heterojunctions has also resulted in the study of spin baths
constituted of spins. At very low temperatures, the decoher-
ence engendered by a spin environment is expected to domi-
nate the loss of the coherence arising from a coupling to
phononic degrees of freedom.

In the limit of weak coupling between the qubit and the
bath, the effect of intrabath interactions have been explored
earlier in other works.8–14 In some cases, interactions were
found to decrease the rate of decoherence, though the exact
opposite was seen in cases where the spin bath was on the
verge of a standard magnetic quantum phase transition.12 On
the other hand, the qualitative nature of the decoherence, i.e.,
whether it is Markovian or non-Markovian depends largely
on the nature of the initial state of the bath.14–17 For baths at
zero temperature, the decoherence is often non-Markovian.
Examples include the well-known spin-boson model,6 and
models of interacting spin environments that we already
mentioned above.11,12 It has also been found in the case of a
qubit interacting via the Fermi contact hyperfine coupling
with a bath of polarized nuclear spins.15 However, for baths
in thermal equilibrium, i.e., at finite temperatures, the deco-
herence in the weak-coupling limit is expected to be Mar-
kovian as in the case of the spin-boson model. This aspect
was also seen in the case of interacting spin baths at finite

temperatures.8,10–13 The associated Markovian decay rate
was also found to increase with temperature and, unlike the
case of bosons, was found to saturate at high enough tem-
peratures.

Since interactions between spins in condensed-matter sys-
tems are known to generate a whole range of complex ther-
modynamic behaviors, it is interesting to ask whether inter-
actions between the bath spins generate novel behavior for
the coherence of a qubit coupled to such a bath. In this gen-
eral context, various questions arise naturally: does the de-
coherence contain clear signals about the underlying thermo-
dynamic phase of the bath? Is Markovian decay to be
expected for all interacting spin environments at finite tem-
peratures, where the bath is in a statistical mixture at tem-
perature T, and not in a pure state?11,18,19 And can decoher-
ence or others physical quantities associated with the qubit
be used as a sensitive probe of the dynamics of the underly-
ing spin environment?

Here, we shall explore some of these issues by consider-
ing the problem of the decoherence of a qubit induced by
weak coupling to a model spin bath with nontrivial dynamics
arising from strong frustration and prepared in an initial state
which is in thermal equilibrium. Highly frustrated or disor-
dered baths were partially explored in Refs. 10 and 11 where
complete predictions for the decoherence could be made
only for the case of a one-dimensional �1D� Ising bath or for
spin shards in the infinite temperature limit. Though these
works illustrate the potential richness of interacting environ-
ments they also highlight the difficulty and limitations of
using analytical methods to study these problems. We adopt
a disordered spin bath described by the mean-field random
Ising model in a transverse magnetic field. This environment
is characterized by a rich thermodynamic phase diagram
which shows a spin-glass to paramagnetic transition as a
function of temperature and external magnetic field.20 The
total Hamiltonian for the system is given by

H = HB + HSB,
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where HB is the bath Hamiltonian and HSB denotes the spin-
bath interaction. The Pauli matrices �c and �i denote the
spin of the qubit and the ith spin of the bath, respectively.
The exchange energies Jij are quenched random variables
with a probability distribution P�J�= 1

�2��
e−J2/2�2

, where the
standard deviation of the distribution � sets the unit of en-
ergy. The qubit couples to the bath operator Va=�i

N�i�i
a with

a representing either the z or the x component of the spins.
The coupling constants � are also taken to be quenched ran-
dom variables. The physics of the bath is described by HB,
the random transverse Ising model �RTIM� which is known
to have the following phase diagram: at zero temperature, for
transverse fields smaller than a critical field hc, i.e., h�hc,
the system is in a spin-glass phase.21 For h�hc the system is
magnetized with a gap in its spectrum. At finite temperatures,
the spin-glass order survives up to a critical temperature
Tsg�h�.22,23 A physical system which is expected to be rea-
sonably described by the above model is LiHoxY1−xF4,
where the Ho concentration, x, tunes the system between
different physical regimes.24 It has been proposed as a mini-
mal toy model to investigate the effects of quantum entangle-
ment of spins.25 The critical temperature Tsg, that sets the
value of the coefficient �, is on the order of 1 K,24 in the
compounds. Consequently, the effective high-temperature
paramagnetic phases we study in this paper correspond to
rather low real temperatures, where we expect the spin envi-
ronment to dominate and phononic contributions to the de-
coherence can be neglected. There have also been proposi-
tions for engineering model magnetic environments with
very small energy scales using cold atoms.13

We note that in the spin-glass phase, only the correlations
involving the x component of the spin exhibit spin-glass fea-
tures whereas the correlation of the Sz components merely
exhibit a gap. Clearly, it would be interesting to explore the
effect of these phases on the decoherence of the qubit. More-
over, due to the inherent anisotropy of the bath, we expect
the decoherence to be dependent on whether the qubit
couples to the x or z components of the bath spins. In this
paper, we address these questions in the limit of weak qubit
spin-bath coupling. Since this problem cannot be studied
analytically, we use numerical exact diagonalization methods
to calculate the bath eigenstates and eigenvalues and conse-
quently, the resulting decoherence. We obtain a rich spec-
trum of results for the coherence of the qubit and, in particu-
lar, a non-Markovian, i.e., a nonexponential decay of the
coherence at finite temperatures.

The paper is organized as follows: in Sec. II, we present
the weak-coupling formalism used to calculate the decoher-
ence of the qubit. We present our numerical method in Sec.
III and use it to study the analytically tractable case of deco-
herence induced by an Ising chain spin bath so as to bench-

mark our method. We compare our results for the Markovian
decoherence rate with known analytical results for an infi-
nitely long chain, so to establish the importance of the finite-
size effects introduced by our numerical method. In Sec.
IV A, we present our results for the decoherence in the weak-
coupling regime for the long-range Sherrington-Kirkpatrick
�SK� model which has an Ising spin-glass phase at low
enough temperatures and present a comparison of our results
with some analytical results which are known in the high-
temperature paramagnetic phase. In Sec. IV B, we present in
detail our main results for the decoherence induced by the
RTIM spin bath for two different couplings of the qubit to
the bath. We conclude with a discussion of our results in Sec.
V.

II. WEAK-COUPLING FORMALISM

In this section, we summarize the weak-coupling
formalism11 used to calculate the decoherence. This approach
is valid provided the energy associated with the qubit-bath
coupling is smaller than all the scales of the bath. We first
assume that at time t=0, the combined system of the central
spin and the bath have a factorizable initial density matrix:
�=��0� � �B. Depending on the coupling of the central spin
to the bath operator Va, the qubit is in a pure state whose
basis vectors are defined by �	a�=
�←a�+��→a����0�
= �	a��	a�	, where �←x�= �← �, �→x�= �→ � and �←z�= �↑ �,
�→z�= �↓ �. The bath is chosen to be at thermal equilibrium
with temperature T
1 /� leading to a density matrix

�B =
e−�HB

Z
, �2�

where Z=Tr exp�−�HB� is the bath partition function. The
time evolved reduced density matrix is given by

��t� = �
�2�←a��←a� + ���2�→a��→a� + M�t�
���→a��←a�

+ M�t��
���←a��→a� , �3�

where the factor

M�t� = Tr�e−i�HB+Va�t�Bei�HB−Va�t� �4�

is a measure of the decoherence induced by the bath at time
t.7,11 Note that Tr denotes the usual trace as HB and Va are
operators in the bath Hilbert space. For weak coupling to the
environment, i.e., for small �, we can use the superoperator
formalism7 to obtain the following form for the
decoherence,11 being the Laplace transform of M�t�

M̃�z� = − i�
0

�

dteiztM�t� , �5�

where z is a complex variable with Im z�0. As shown in
Ref. 11, this Laplace transform can be written as

M̃�z� = �z − �z�	−1, �6�

where the self-energy  up to second order is given by
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2�z� = 2 Tr�Va�B� − 2i�
0

�

dteizt��Va�t�Va�c + �VaVa�t��c	 ,

�7�

where the connected correlation functions are defined as

�Va�t�Va�c = �VaVa�t�� − �Va�t���Va� . �8�

The coherence M can thus be written in terms of the real
functions �2 and �2 defined by

�2�E� − i�2�E� = lim
�→0+

2�E + i�� , �9�

where E is real. This then leads to the weak-coupling result

��t�M�t� =
i

2�
� dE

e−itE

E − �2�E� + i�2�E�
, �10�

where ��t� is the Heaviside step function and �2 and �2
satisfy standard Kramers-Kronig relations. In general, �2�E�
might have analytic as well as nonanalytic parts. It is inter-
esting to note that in the weak-coupling limit, the decoher-
ence is essentially dictated by �2�E� which as can be seen
from Eq. �7� is proportional to the symmetrized dynamic
structure factor of the bath.

Typically for spin baths, we encounter situations where,
one can have a net magnetization along a certain spin direc-
tion �Va�=��0, and/or magnetic ordering where �Va�t�Va�c
=�+ f�t� with � and � being constants independent of time,
and f�t� a time-varying function. The resulting self-energy in
the Laplacian variables then takes the form

2�z� = 2� + 4
�

z
+ g�z� , �11�

where g�z� is some analytic function of z. For the asymptotic
decoherence, the first two terms generate oscillations result-
ing in a decoherence of the form

M�t� = exp�2i�t�cos�2��t�M̃�t� , �12�

where11

ln M̃�t� � −
2

�
� dE

sin�tE/2�2

E2 �2�E� �13�

and

�2�E� = � f̃�E� + f̃�− E�	 �14�

being f̃ the Fourier transform of the function f�t�. Equation
�13� is also known as the time-convolutionless projection
operator approximation.26 The true intermediate time deco-
herence is expected to be lightly modified with respect to the
result predicted by Eq. �13�, but it is expected to be qualita-
tively similar to that predicted by Eq. �10�, which is valid for
all t. In the absence of any intrinsic dynamics of the central
spin, the second-order approximation used here, leads to an
equation for the decoherence which resembles that obtained
for the spin-boson model.27 Though Eq. �10� is exact for the
spin-boson case, here it is valid only in the limit of weak
qubit spin-bath coupling. Moreover, not all spectral densities

�2�E� obtained from interacting systems can be simulated by
the usual noninteracting boson baths.

For the disordered systems studied here, the correlation
functions �7� and �8� need to be averaged over the probabil-
ity distributions of both the exchange interactions Jij and the
coupling constants �i. In the rest of the paper, the coupling
constants �i in Eq. �1� are chosen to have the following dis-
order averages: �i=0 and �i� j = ��2 /N��ij, where N is the
total number of spins in the bath. This choice leads to the
vanishing of the first-order correction to the self-energy since
the disorder average of � is zero. The disorder averaged �2,
is then directly related to the connected local spin correlation
functions �VaVa�c, and it is evaluated using the spectral rep-
resentation for the dynamical structure factor

Saa�E� = �
−�

�

dt exp�iEt��Va�t�Va�c

=
2��2

NM
�
m=1

M
1

Z�m��
i=1

N

�
j,k=1

2N

exp�− �Ej
�m����j�m��Si

a�k�m���2

� ��� − Ej
�m� + Ek

�m�� − 2��2ma
2��E�

= 2����E� + f̃�E� , �15�

where M is the number of realizations of disorder for the
exchange interactions Jij and ma

2 is the disordered average of
the square of the local magnetic moment. Our method for
evaluating Eq. �15� is presented below.

III. NUMERICAL METHOD

To compute �2 for the RTIM spin bath we use exact di-
agonalization methods. The advantage of the full diagonal-
ization is that it permits us to calculate finite temperature
quantities as well. We first study the coherence of the qubit
coupled to a random Ising chain bath described HB with the
external field set to h=0, where known analytical results can
be used to benchmark the implemented numerical method.
The interactions in the bath are confined to nearest neighbors
on the chain and the spin-bath coupling is taken to be in the
a=z direction.

We consider baths with the number of spins N varying
from 3 to 10 spins. For a given set of exchange interactions,
the resulting Hamiltonian which is a 2N�2N matrix is ex-
actly diagonalized and the eigenenergies and functions are
obtained. These are then used to compute the dynamical
structure factor and �2�E�. Since the interactions are
quenched random variables, we repeat the above procedure
for several thousands of realization of disorder and we obtain
the disorder averaged �2. In Fig. 1, we plot �2�E� for the
case of the Ising bath for different sizes of the bath and fixed
temperature T=0.01�. The analytical results for the thermo-
dynamic case are also shown in the graph.

Note that as the number of spins N in the chain increases,
the numerical results converge to the analytical curve ob-
tained for a thermodynamic bath. At high E, �2�E� is almost
independent of the size of the bath. This is due to the fact
that the typical energy bonds are of order Jij�O���	 �inde-
pendent of the size of the bath�, which are sufficiently small
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to produce any modification in the high-energy spectrum. At
low energies, size effects are most significant, since at finite
sizes there are no exact cancellations that lead to the vanish-
ing of �2�E� at E=0. Nevertheless, the spectra shows good
uniform convergence as N increases. At higher T, when the
thermal energy is higher than the typical energy of the bonds,
the convergence is even better and �2�E� is roughly indepen-
dent of the size of the bath. In Fig. 2, we plot the variation in
�2�E� for different temperatures. As shown in Ref. 11, it is
the low-frequency part that is mainly affected by the tem-
perature effects.

At high T, �2�E� is basically a broad peak of width �,
centered at E=0. This is due to the thermal fluctuations
which result in uncorrelated spins, and �2�E� merely reflects
the distribution of the bonds Jij and the structure of the en-
ergy levels. Both temperature and size effects are seen to
have an impact on the low-frequency part of �2�E� with the
consequence that the asymptotic decoherence is more sensi-
tive to thermal fluctuations and finite-size effects.

We use our numerical results for �2�E� to calculate the
decoherence M�t� given by Eq. �13�. A comparison of our
results with the analytical results obtained for the infinite
chain11 permits us to gauge the importance of finite-size ef-

fects. As for the infinite chain case of Ref. 11, the decoher-
ence for the finite chain can also be analyzed in terms of
three regimes described by the two characteristic times: t�

=�−1 and t�=�=T−1. At short times, the coherence is given
by the universal Gaussian, ln M�t�=−t2�2��−1dE�2�E�,
given by the sum rule of �2�E�

�
−�

�

dE�2�E� = 4��2/� . �16�

The asymptotic Markovian regime, where the coherence
decays exponentially is characterized by the values of �2�E�
at E=0 �for t→�, ln M�t��−�2�0�t	. At high T, M�t� re-
mains practically constant up to t� t�, where a final Markov-
ian regime arises. When T��, the Gaussian regime is fol-
lowed by an intermediate time regime where the coherence
decay as a power law, before reaching the Markovian re-
gime. A careful inspection of our numerical data shows that,
�2�0� scales as 1 /N2 �Fig. 3�. The extrapolated values of
�2�0� for N→� as a function of T are plotted in Fig. 4,
where it can be seen that there is an excellent agreement
between the analytical values given by11 �2�0�
=2��2dJP�J�2�1−tanh��J�2	, and the extrapolated values
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FIG. 1. �Color online� ��−2�2�E� as a function of E for T
=0.01� and different N. Note that as N increases, the numerical
results approach the analytical result �An.�. A similar result is found
for the SK long-range system.
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FIG. 2. ��−2�2�E� as a function of E for different T for
N=7.
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FIG. 3. ��−2�2�0� as a function of 1 /N2. Note the excellent
agreement of the extrapolated value of �2�0� and the analytical one,
except at low T �T�0.2��.

0 0.1 0.2
T/∆

0

0.2

0.4

0.6

∆λ
−2

Γ 2(0
)

0 2 4 6 8 10
T/∆

0

0.5

1

1.5

2

∆λ
−2

Γ 2(0
)

Analytic
Extrapolation

FIG. 4. ��−2�2�0� �extrapolated to the thermodynamic limit� as
a function of T. Good agreement with analytical results �dotted
curve� except at T�0.2� �inset�.
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except for T�0.2� �inset of Fig. 4�. At very small T, since
both size effects and temperature effects are non-negligible
at low energies, we surmise that the accessible system sizes
are not sufficient to reach the scaling regime.

To summarize, we see that our numerical method does
reproduce the expected analytical behavior for the spin chain
bath except at low temperatures where, the Markovian rate is
overestimated in our approach. Nonetheless, our results re-
produce the existence of the different regimes. We would like
to draw attention to the fact that the benchmark case of the
chain is in a sense a worst case scenario. In fact, for a 1D
spin bath one expects to have stronger finite-size effects
compared to the models to be studied in the rest of the paper:
i.e., infinite-range models which are known to have much
reduced finite-size effects.22,28

Before leaving this numerical method section we would
like to note that our method differs substantially from others
that are based on the solution of finite-size clusters and clus-
ter expansions. Those methods usually deal with a nondisor-
dered model Hamiltonian, which is solved for a small system
size. The finite-size effects are dealt with by implementing
various cluster expansion schemes. In those cases, the finite
nature of the cluster provides a discrete pole structure with a
finite low-energy cutoff and hence a finite recursion time that
provides a long time cutoff for the study of the decoherence
effects. In our case the situation is different. The effect of the
bath enters through the spin susceptibility, and this quantity
in a disordered model is computed through the disorder av-
erage. Since we have a continuous �Gaussian� distribution of
couplings, the disorder-averaged susceptibility, though com-
puted on finite-size clusters, does not have a finite low-
energy cutoff. Therefore, the decoherence does not have a
finite recursion time. All the systematic errors in our ap-
proach are due to the second-order approximation, which is
safe so long the coupling between the qubit and the bath is
small, and to the finite size of the clusters that are diagonal-
ized to compute the susceptibility of the bath’s Hamiltonian.
This latter quantity can be, nevertheless, extrapolated to large
system sizes, as we shall see latter. This is validated by the
benchmark of the method against an analytically solvable
case that we describe in the beginning of next section.

IV. MODELS OF SPINS BATHS

In this section, we apply our numerical method to study
the decoherence induced by interacting quantum spin baths
which do not have conventional magnetic order such as fer-
romagnetism or antiferromagnetism. The models studied all
have infinite-range interactions: i.e., all spins interact with
each other which leads to the presence of a significant geo-
metric frustration. Similar models have been studied in Ref.
10, where the focus was on the nature of the distribution of
the energy level spacings and their impact on the decoher-
ence. A standard lore is that thermal fluctuations in the weak-
coupling regime always leads to a Markovian, i.e., exponen-
tial decoherence. Here, we will discuss cases, where the
decoherence remains highly non-Markovian in certain finite
temperature paramagnets.

A. Infinite-ranged Ising bath with h=0

We study the decoherence induced by the infinite-range
random Ising bath also known as the SK model.29 For a
Gaussian distribution with zero mean of the exchange inter-
actions between the spins, the system is paramagnetic except
below the spin-glass transition temperature T�Tsg=� where
the system develops spin-glass order. Note that for the
infinite-range model, extensiveness of the free energy re-
quires as to scale the interactions Jij→Jij /N. In this case,
there is no first-order contribution to the self-energy and the
second-order contribution is given directly by the full corre-
lation function as opposed to the connected correlation func-
tion of Eq. �8�, i.e., both �=�=0. Moreover, �2 is propor-
tional to the probability distribution of the local magnetic
fields as discussed in Ref. 11. This distribution is straightfor-
ward to evaluate analytically in the paramagnetic phase but
numerical methods are required to obtain the same in the
spin-glass phase. Earlier work only discussed the evolution
of the Markovian rate close to the spin-glass transition
temperature.11 Here, we compute the coherence for all times
and find an asymptotic Markovian regime at all finite tem-
peratures. Our results are shown in Fig. 5 and we see that
they qualitatively resemble the results obtained for the Ising
chain. Moreover, our method reproduces known analytical
results in the paramagnetic phase and also approaches the
expected linear behavior of � at low frequencies as T→0.29

The numerical results for ln M�t� are shown in Fig. 6. At
short times, t� t�
1 /�, the sum rule obeyed by �2 ensures
that M�t� decays as a Gaussian akin to the free spin bath
�FSB�. For times t� t�, temperature starts playing a relevant
role. At high T�Tsg, since �2�E� is a peak of width O���, cf.
Fig. 5, M�t� decays as a Markovian for all times t� t�. For
T�Tsg, the asymptotic Markovian regime is preceded by a
power-law regime resulting from the partial linear behavior
of �2�E� for small E. As T→0, this intermediate power-law
regime is expected to extend to the asymptotic regime. This
is however, hard to infer from the numerics, since finite-size
effects smear the value of �2�0� and hence, the linear behav-
ior of �2�E� predicted by the Thouless-Anderson-Palmer
�TAP�-method calculation.30 Nevertheless, we see that as T
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FIG. 5. �Color online� ��−2�2�E� for different values of T and
N=9, for the SK bath. The results are qualitatively similar to that of
the chain.
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decreases from the paramagnetic phase, �2�0� decreases and
the linear contribution to �2�E� become more significant. Ex-
trapolating the results of �2�0� to the limit of N→� to obtain
the Markovian decay rate in the thermodynamic limit, we
find that �2�0� scales 1 /N, cf. Fig. 7 �instead of the 1 /N2

scaling in the Ising chain�. The resulting Markovian rate is
plotted as a function of T in Fig. 8 and perfectly matches the
analytical values predicted in Ref. 11 in the PM phase. As
before, there is a mismatch of the results in the very low-
temperature regime, probably because our system sizes do
not access the scaling regime.

As in the case of the Ising chain, we find that interactions
between the spins do lead to longer coherence times as op-
posed to the case of a free spin bath. The only visible effect
of the spin-glass phase transition is the point of inflexion in
the curvature of ln M�t� for t� t� when the asymptotic Mar-
kovian regime takes over. This curvature is negative for T
�Tsg and positive for T�Tsg. The absence of a radical
change in the decoherence is not surprising since the qubit
does not couple to the operator which corresponds to the
spin-glass order parameter.

In the following section, we study the RTIM which is
known to have both, a quantum phase transition at T=0, and
a finite temperature classical phase transition. We study two

different couplings between the qubit and the bath spin op-
erators and show that the nature of these couplings has
highly nontrivial consequences for the decoherence.

B. Sherrington-Kirkpatrick model in a transverse field hÅ0

The Sherrington-Kirkpatrick model in a transverse field
�RTIM� is a more interesting case than the previously studied
h=0 case. At T=0, the system undergoes a phase transition
from a spin-glass state for h�hc�1.44� to a gapped phase
for h�hc. As temperature is increased, the spin-glass phase
disappears at a finite temperature which depends on the value
of the magnetic field. The magnetic field h is therefore, ex-
pected to deeply influence the behavior of �2�E�, and hence
the coherence of the central spin. Since the model is not
isotropic, it is important to note that the spin-glass order
exists only along the x component of the spin. To probe the
physical ramifications of this anisotropy, we examine two
different couplings of the central spin to the bath: a coupling
of the spin operators in the direction of the field �a=z� and a
coupling perpendicular to the field �a=x�. As we will show
below, these lead to radically different predictions for the
decoherence. Previous numerical studies22 of this model
have shown finite-size effects to be rather minimal. Given
the numerical complexities in the vicinity of the phase tran-
sition, we limit the scope of the present study to consider two
values of the field h=0.1hc and h=2hc, that set the system in
qualitatively different regimes.

1. Coupling parallel to the field (case a=z)

Since a magnetic moment is present in the z direction for
h�0, the �2�E� is given by the full connected correlation
function �8�. As shown in Eq. �15�, this contributes a singular
term ����E� to �2�E� which then leads to oscillations in
M�t� �Eq. �12�	. An unambiguous way to extract the coeffi-
cient � is via the sum rule satisfied by the dynamical struc-
ture factor.22 This, however, is numerically cumbersome and
in the rest of the paper, we do not deal explicitly with these
singular terms, since they only induce oscillations and in-
stead concentrate on the nonsingular part of �2�E� that leads
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to a decay of the coherence. The T=0 behavior of �2�E�
when a small field h=0.1hc is applied is shown in Fig. 9. We
note that even for such small fields, �2�E� is radically differ-
ent from the earlier case of h=0.

Our results for �2�E� obtained for N=9 are shown in Figs.
9 and 10, for the small and large field case, respectively. In
the former, with h=0.1hc, �2�E� exhibits a gap of order 2h at
T=0 �numerically, the T=0 curve is indistinguishable from
the T=0.1� curve shown in Fig. 9�. At high T, �2�E� shows
a pronounced peak around E� �0.1h and broader peaks of
width �4� in the background. Similar features are seen at
high magnetic fields �Fig. 10�: existence of a gap 2h at T
=0 and a two peak structure of width 4� at high tempera-
tures. For high enough T, the susceptibility at low frequen-
cies becomes linear with a temperature-dependent slope,
��E�=
�T��E� as E→0. Note however, that in the high field
case the ��E� term arising from moment formation carries
most of the spectral weight at T=0, as the spectral weight of

the regular part of �2�E� decreases dramatically. The princi-
pal difference between the high- and low-field cases is the
presence of the sharp peak around E�2h in the low-field
case. We have studied the finite-size scaling of �2�E� and we
find that the features mentioned above are robust to finite-
size effects. Moreover, contrary to the previous cases, here
we obtain a good convergence with system size in the low-
frequency regime.

Interestingly, our results belie on the naive expectation
that the behavior in the high-temperature paramagnetic phase
be independent of the values of h considered here. This can
be attributed to the fundamental difference between the
structure of eigenfunctions and eigenvalues in the two cases:
for h=0.1hc, they correspond to that of a spin-glass system,
while the high-field case essentially correspond to spins in a
strong field where the interactions between the spins can be
viewed as a perturbation. At high enough temperatures, all
eigenfunctions and eigenvalues contribute equally to the
�2�E� thus the large T regime actually reveals the “geomet-
ric” underlying structure of the Hamiltonian, rather than a
naively expected universal paramagnetic regime of free
spins. This observation remains relevant for all the different
spin models analyzed in this work.

The results for �2�E� indicate a very rich evolution of the
coherence of the central spin, particularly at long times. We
first analyze the results for M�t� plotted in Fig. 11 �high T�
and Fig. 12 �low T� for h=0.1hc. As before, for t� t�, the
sum rule obeyed by �2�E�, Eq. �16�, dictates an universal
Gaussian decay for the decoherence, independently of h, �,
and T. This is indeed verified by our results.

For T=0 �insets of Fig. 11�, the decoherence is only par-
tial due to the presence of a gap in �2�E� and shows oscilla-
tions with a frequency proportional to the size of the gap.
Similar oscillations are also seen at very low temperatures.
The short-time regime t� t� is followed by a power-law re-
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gime for t� tp which saturates to a finite value at long times.
As T increases, the short-time and asymptotic power-law re-
gime are separated by an intermediate Markovian regime for
tm� t� tp. For comparison, the coherence for a bath with N
=10 spins is plotted in Fig. 13 various T. As in the case for
h=0, not dramatic change is seen as one traverses the spin-
glass transition temperature. The existence of an asymptotic
power-law regime at finite temperatures completely defies
the conventional lore that the asymptotic decoherence at fi-
nite temperatures is Markovian.18,19 A systematic analysis of
our numerical results indicates that for low fields, tp is an
increasing function of temperature. This implies that in the
high-temperature paramagnetic phase, the power-law regime
is pushed to ultralong times and the decoherence is Markov-
ian for realistic times. Though the exact values of tp and tm
are subject to finite-size effects, we have studied various sys-
tem sizes and find that the intermediate Markovian and
power-law regimes will survive in the thermodynamic limit.

Before moving on to the high magnetic field case, we
shall present an intuitive physical picture of the very low-
field case. We first recall the physical picture of the spin-

glass ground state at T=0 and h=0, that was discussed in the
numerical investigation of Ref. 22. There it was argued that
the spin system can be viewed as a coexisting collection of
large nonfrustrated clusters of spins with few remnant
strongly frustrated “dangling” spins. Thus, the dangling spins
experience a distribution of effective magnetic fields heff
which, from the work of Sherrington and Kirkpatrick is
known to have a linear distribution. This linear is directly
reflected in the �2�E���E� that we discussed before.

Now, when a small external magnetic field is turned on,
the unfrustrated spins of the clusters will remain essentially
unaffected. In contrast, the dangling spins will align in the
direction of max�heff ,h�. This means that the finite external
field h will act as a low-frequency cutoff, pushing spectral
weight toward higher frequencies and thus opening an
h-controlled gap in �2�E� around E=0 �see the low-T curve
of the right inset of Fig. 9�. This behavior is in stark contrast
with the reference case h=0 presented in Sec. IV A where
�2�E� remains always gapless �Fig. 5�. The dramatic change
in the low-E regime implies also the qualitative change in the
long-time behavior of the decoherence that we described in
the previous section.

This line of argumentation also allows us to qualitatively
understand the origin of the linearity of �2�E� at high T. In
this limit, from Eq. �15� we see that all eigenvalues and
eigenfunctions contribute to �2�E�. On the other hand, when
h=0, the data of Fig. 5 shows that �2�E� is finite as E→0, so
there are plenty of contributions at arbitrary low frequencies,
which originate in pairs of quasidegenerate eigenstates �n�
and �m� with eigenenergies En�Em, which also have a non-
vanishing matrix element snm

z = �n��i
z�m�. When a small exter-

nal field �h�hc� is turned on we may consider it as a pertur-
bation and perform the following qualitative analysis: The
�2�2� block of H in the subspace of n and m will read

Hnm = � Eo hsnm
z

hsnm
z Eo

� ,

where Eo is the quasidegenerate energy of the states. The
effect of the small h is to lift the degeneracy of the pair of
levels resulting in a transfer of spectral weight from E�0 to
higher frequencies. Extending the analysis to all pairs of
quasidegenerate states contributing to �2�E� implies the im-
mediate collapse of the finite value of �2�E=0� to zero when
h�0, as is seen in our results of Fig. 14. Moreover, the new
eigenvalues of Hnm are ��hsnm

z , thus with the reasonable
assumption of a featureless distribution of the snm

z matrix
elements, we conclude that the degeneracy lifting is uni-
formly distributed and directly proportional to h. This im-
plies that the behavior of �2�E� at very low frequencies
should be linear in E with a slope roughly given by 1 /h. This
analysis is in qualitative agreement with the low-field data
shown in Fig. 14.

At high magnetic fields �Fig. 15�, the coherence presents a
different qualitative behavior. At low T, since �2�E� is nearly
gapped, and most of the spectral weight is in the ��E� term,
the central spin decoherence is very weak and shows oscil-
lations. At high T, in contrast to the low h behavior, there is
no well-defined intermediate Markovian regime, but we re-
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cover a power-law decay �M�t�� t−�	 at asymptotic times.
This coefficient �, which characterizes the power-law decay,
increases with T and saturates to a finite value at very high
temperatures, proving that the qubit decoheres faster as tem-
perature increases. The value of the exponent � extrapolated
to the thermodynamic limit, as a function of T, is shown in
Fig. 16.

2. Coupling transverse to the field (case a=x)

We now explore the case where the qubit couples directly
to the bath operator which is related to the spin-glass order
parameter. In the spin-glass part of the phase diagram �h
�hc�, we now have ��x

i �=0 and ��x
i �2�0 ∀i. As in Sec.

IV B 1, �2�E� is again a sum of a regular and a singular
contribution. The singular part is a ��E� contribution whose
strength is related to the spin-glass order parameter or Ed-
wards Anderson parameter qEA, �2

NR= �4�qEA−�i��x
i �2���E�.

The nonregular part induces oscillations in M�t� and the

regular part results in the decay of M�t�, Eq. �13�. The esti-
mation of qEA is a central problem in spin glasses and as
expected our numerics do not produce well-converged re-
sults of the values of this parameter. qEA is typically esti-
mated by systematically studying �2�E� for different sizes of
the system, as in Ref. 22. Though it is reasonably straight-
forward to estimate qEA at T=0, this is not the case at finite
temperatures where the delta peak is broadened by both
finite-size effects and thermal excitations.22

When h=0, the operator Vx is constant of motion since
�HB ,Vx	=0 resulting in a temperature-independent ��E�
=4��2�−1��E�. As discussed in Sec. II, this results in a
purely oscillatory behavior of the form M�t�=cos�2��−1t�.
When the field h is turned on, spin flips are allowed,
�HB ,Vx	�0 and �2�E� has a richer structure. For small h
�h�hc� and T=0, in addition to a ��E� term �2�E� has a
regular part �R�E�� �E� as E→0 and has a peak of width 4�,
centered around E=2h.22 As temperature is increased, since
qEA is expected to decrease, a part of the spectral weight of
the ��E� term is transferred to the regular part �R which is
now nonlinear at low energies �Fig. 17�.

We can now construct a picture of the coherence in the
spin-glass phase based on the above description of �2�E�.
The short-time behavior is governed by a Gaussian. Due to
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the aforementioned problem with the broadening of the delta
term, we have not been able to obtain clear predictions for
the intermediate and asymptotic decoherence for low h and
low T. This is intimately linked to the underlying spin-glass
order since in this case some of the contribution to the sin-
gular part exists only in the thermodynamic limit, as opposed
to the preceding section, where the singular term arises from
a straightforward magnetization of the underlying system
and hence one did not have to deal with broadening induced
by finite size. Nonetheless, for T=0 and h�hc it is possible
to have a qualitative picture of the coherence. As in the zero-
field case, the linearity of �2�E� as E→0 leads to a power-
law asymptotic decay of the coherence. At finite tempera-
tures, we expect the asymptotic decay to be Markovian.

For high h �h�hc�, there is no spin-glass order and hence
no singular contribution to �2�E�. At T=0, the function
�2�E� is gaped, and it is centered in E= �2hc, with a width
of �4�. As T is increased, thermal excitations appear within
the gap �Fig. 17�. Thus, in the former case the decoherence is
partial �Fig. 18� and we see oscillations with a frequency
given by the gap size. As T increases, thermal excitations

start to fill the gap and M�t� decays in a Markovian way
given by the value of �2�0�. This behavior conforms to the
usual expectations of asymptotic Markovian decay at finite
temperatures and is very different from the small h case.

V. CONCLUSIONS

In this paper, we have used exact diagonalization methods
to study the decoherence of a central spin induced by spin
baths with random interactions. We find that the asymptotic
decoherence is intricately linked with the nature of the inter-
actions in the bath. Moreover, for a given set of bath param-
eters, the decoherence crucially depends on the nature of the
coupling between the qubit and the bath spins. For the cases
of the random transverse Ising model studied here, we find
that the underlying nature of the eigenstates of the bath
Hamiltonian play a preponderant role in determining the de-
coherence even in the finite temperature paramagnetic phase.
More precisely, we find that the decoherence in some of the
finite temperature paramagnetic phases is strongly non-
Markovian. We emphasize that standard Markovian approxi-
mations used to obtain the density matrix and the decoher-
ence at finite temperatures should not be used blindly as they
can lead to highly misleading results as in the present case of
disordered interacting systems. Unfortunately, we have not
been able to study the decoherence in the vicinity of the
phase transitions in the bath �both at zero and finite tempera-
tures�. This requires the use of other numerical and analytical
methods which is beyond the scope of the present work. It
will be interesting to study if these features are seen in other
highly frustrated spin baths and whether this non-Markovian
behavior survives when order corrections to the self-energy
are taken into account. These questions are left for future
work.
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